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Abstract

Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road 

surface for recycling. The removal of the road surface has the potential to release respirable 

crystalline silica, to which workers can be exposed. This paper describes an evaluation of 

respirable crystalline silica exposures to the operator and ground worker from two different half-

lane and larger asphalt pavement milling machines that had ventilation dust controls and water-

sprays designed and installed by the manufacturers.

Manufacturer A completed milling for eleven days at four highway construction sites in 

Wisconsin, while Manufacturer B completed milling for ten days at seven highway construction 

sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were 

collected from an operator and ground worker during the course of normal employee work 

activities of asphalt pavement milling at eleven different sites.

Forty-two personal breathing zone air samples were collected over 21 days (sampling on an 

operator and ground worker each day). All samples were below 50 µg/m3 for respirable crystalline 

silica, the National Institute for Occupational Safety and Health recommended exposure limit. The 

geometric mean personal breathing zone air sample was 6.2 µg/m3 for the operator and 6.1 µg/m3 

for the ground worker for the Manufacturer A milling machine. The geometric mean personal 

breathing zone air sample was 4.2 µg/m3 for the operator and 9.0 µg/m3 for the ground worker for 

the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean 

exposure for each occupation were well below 50 µg/m3 for both studies. The silica content in the 

bulk asphalt material being milled ranged from 7% to 23% silica for roads milled by Manufacturer 

A and from 5% to 12% silica for roads milled by Manufacturer B.

The results indicate that engineering controls consisting of ventilation controls in combination 

with water-sprays are capable of controlling occupational exposures to respirable crystalline silica 

generated by asphalt pavement milling machines on highway construction sites.
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 INTRODUCTION

Worker exposure to respirable crystalline silica can occur in agriculture, foundry work, 

hydraulic fracturing, mining, sandblasting, stone and granite work, and construction.(1–13) 

Many construction tasks have been associated with overexposure to crystalline silica.(14, 15) 

Among these tasks are tuck pointing, concrete sawing, concrete grinding, concrete 

scabbling, jackhammering, installing roof tiles, and abrasive blasting.(16–24) Road milling 

has also been shown to result in overexposures to respirable crystalline silica.(14, 25, 26) 

However, the three road-milling studies do not provide enough information about the 

operating parameters and engineering controls present on the milling machines to determine 

if the overexposures were due to a lack of effective controls or poor maintenance of the 

machines.

A variety of machinery are employed in asphalt pavement recycling, including cold-planers, 

heater-planers, cold-millers, and heater-scarifiers.(27) Cold-milling is the focus of this article. 

Cold-milling, which uses a toothed, rotating cutter drum to grind and remove the pavement 

to be recycled, is primarily used to remove surface deterioration on both petroleum-asphalt 

aggregate and Portland-cement concrete road surfaces.(27) Key components of a typical half-

lane and larger asphalt pavement milling machine used for cold milling are shown in Figure 

1.

Approximately 251,000 U.S. workers are employed in highway, street, and bridge 

construction.(28) A number of these workers use cold-milling machines or work in close 

proximity to the machine. Dust generated from the machines often contains respirable 

crystalline silica. This respirable dust can be transported by air currents to worker breathing 

zones near the milling machine.

The testing described in this article was coordinated by the Silica/Asphalt Milling Machine 

Partnership and is a result of a collaborative effort by labor, industry, and government to 

reduce respirable crystalline silica exposure during asphalt pavement milling in highway 

construction. This Silica/Asphalt Milling Machine Partnership is coordinated by the 

National Asphalt Pavement Association (NAPA) and includes all U.S. and foreign 

manufacturers of heavy construction equipment that currently sell pavement-milling 

machines to the U.S. market. In addition to NAPA and the equipment manufacturers, the 

Silica/Asphalt Milling Machine Partnership includes numerous paving contractors, the 

International Union of Operating Engineers, the Laborers International Union of North 

America, the Association of Equipment Manufacturers, and government organizations 

including the Occupational Safety and Health Administration (OSHA), the Federal Highway 

Administration, and the Centers for Disease Control and Prevention’s (CDC’s) National 

Institute for Occupational Safety and Health (NIOSH).
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One of the aims of the Silica/Asphalt Milling Machine Partnership, and the focus of this 

article, is to evaluate engineering controls developed to reduce silica exposures among 

workers on half-lane and larger cold-milling machines. The engineering controls evaluated 

in this study included ventilation controls and water-spray systems used to cool the cutting 

teeth on asphalt pavement milling machines. The water-spray dust suppression controls were 

evaluated during previous field studies.(29) The capture efficiency of the ventilation dust 

controls were evaluated using tracer gas in a factory setting before field testing was 

conducted.(30, 31) The manufacturers each optimized silica dust controls as part of the 

Partnership. The purpose of this final phase of testing was to verify the effectiveness of the 

final engineering control configuration before installation on an entire fleet of milling 

machines.

 Silica Health Effects and Exposure Limits

Inhalation of respirable crystalline silica can cause silicosis, a debilitating and potentially 

fatal lung disease. Silica exposure has also been associated with lung cancer, chronic 

obstructive pulmonary disease, renal disease, and other adverse health outcomes.(32) During 

the period from 1990 through 1999, at least one-third of decedents with silicosis had worked 

in construction or mining.(33) The NIOSH recommended exposure limit (REL) for respirable 

crystalline silica is 50 µg/m3 as a time-weighted average (TWA) determined during a full-

shift personal breathing zone (PBZ) sample. This REL is applicable for most workers who 

work up to a 10-hr workday during a 40-hr workweek to reduce the risk of developing 

silicosis, lung cancer, and other adverse health effects.(32)

The current OSHA permissible exposure limit (PEL) for respirable dust containing 

crystalline silica for the construction industry is measured by impinger sampling. In the 

construction industry, the PELs for cristobalite and quartz are the same.(34)

Since the PELs were adopted, the impinger sampling method has been rendered obsolete by 

gravimetric sampling.(35) OSHA currently instructs its compliance officers to apply a 

conversion factor when converting between gravimetric sampling and the particle count 

standard when characterizing construction operation exposures.(36)

On September 12, 2013, OSHA published a Notice of Proposed Rulemaking (NPRM) for 

occupational exposure to respirable crystalline silica. The NPRM was published in the 

Federal Register and proposes a PEL of 50 µg/m3 for respirable crystalline silica as an 8-hr 

TWA exposure.(37)

The American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit 

Value (TLV) for quartz and cristobalite (respirable fraction) is 25 µg/m3.(38) The 

documentation to the TLV states that “it is the concern about fibrosis (silicosis) and the 

precedent inflammatory process resulting from silica exposures, and the association of 

inflammation and fibrosis with lung cancer that leads to this recommendation.”(39)

 Description of the Dust Controls

A NIOSH document Best Practice Engineering Control Guidelines to Control Worker 
Exposure to Respirable Crystalline Silica during Asphalt Pavement Milling provides 
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detailed recommendations for ventilation controls and water-sprays on asphalt milling 

machines.(40) The ventilation control recommendations focus on providing an enclosure 

around the drum housing and conveyors, proper hood and duct design, airflow capacity, 

durability of the duct and fan, and measures to prevent clogging of the ventilation control. 

To contain silica dust, the manufacturers designed their systems to remove air and maintain 

negative air pressure in the drum housing of the milling machine to contain the source of 

dust generation. Milling machine manufacturers also optimized water-sprays along the 

primary and secondary conveyor in addition to the original water applications applied only 

to the drum to cool cutting teeth.

The equipment provided by Manufacturer A and used during the first 11 days at four sites 

was an asphalt milling machine with dual diesel engines capable of producing 534 kilowatt 

(kW) (716 horsepower (HP)) that comply with emissions standard EC Stage 3b / US Tier 4i. 

The Manufacturer A asphalt milling machine had a 2 m 79-inch) wide cutter drum with a 

ventilation control and water spray dust suppression. The ventilation control used a fan and 

flexible hose system to draw air through a hood through the top cover of the primary 

conveyor nearest the drum housing which created negative air pressure in both the primary 

conveyor and drum housing areas. The ventilation control did not include any filtration but 

exhausted the air at the end of the secondary conveyor away from any workers. The water 

spray dust suppression system included water applied to the drum housing to cool the teeth 

and suppress dust as well as additional water spray nozzles in the primary conveyor to 

suppress dust along the conveyed path of recycled asphalt pavement. The maximum water 

flow rate was 18 gallons per minute but was adjusted by the operator depending on milling 

machine speed and depth of cut.

The equipment provided by Manufacturer B and used during the last 10 days at 7 sites was 

an asphalt milling machine with an 2.2 m 86-inch) wide cutter drum and a diesel engine that 

provides 462 kW (620 HP) at 1850 rpm. The Manufacturer B asphalt milling machine was 

fitted with a water spray system and ventilation controls consisting of a hydraulic powered 

5.2 kW (7-hp) Ilmeg fan connected to a 6-inch (15 centimeter (cm)) diameter duct leading to 

a manifold that split the flow into two 4-inch (10 cm) diameter ducts that exhausted air at the 

top of the secondary conveyor. The ventilation control used a fan and flexible hose system to 

draw air through multiple slots through the top cover of the primary conveyor near the drum 

housing and near the conveyor transition area which created negative air pressure in both the 

primary conveyor and drum housing areas. The ventilation control did not include any 

filtration but exhausted the air at the end of the secondary conveyor away from any workers. 

The water spray dust suppression system included water applied to the drum housing and 

along the primary conveyor and secondary conveyors as shown in Figures 5, 6, and 7 of 

NIOSH Publication No. 2015-105.(40) The maximum water flow rate was 23 gallons per 

minute but was adjusted by the operator depending on milling machine speed and depth of 

cut.

 Description of the Operator and Ground Worker Tasks

PBZ air samples for respirable crystalline silica were collected from the milling machine 

operator and ground worker during the course of normal employee work activities of asphalt 
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pavement milling. The milling machine operator would typically spend the entire shift on 

the operator bridge of the milling machine which is located above the cutter drum housing. 

The operator is responsible for adjusting controls such as milling machine speed, steering, 

depth of cut, water flow to cutting teeth, and maintaining communications with dump truck 

drivers using hand signals to fill trucks with recycled asphalt pavement. The ground worker 

operates the ground controls on the back sides of the milling machine and would typically 

spend most of the shift walking next to the machine at ground level several feet away from 

the drum housing. The primary task of the ground worker is to operate ground level milling 

machine controls associated with the quality of cut for the road surface being milled. The 

ground worker may also be responsible for tasks such as coordinating traffic flow around the 

machine especially when milling through intersections, connecting the hose from the water 

truck to the milling machine, and various additional tasks.

 METHODS

PBZ air samples for respirable crystalline silica were collected from the milling machine 

operator and ground worker using respirable dust cyclones (model GK2.69, BGI Inc., 

Waltham, MA) at a flow rate of 4.2 liters/minute (L/min) with battery-operated sampling 

pumps (Gilian model GilAir® Plus, Sensidyne®, Clearwater, FL) calibrated before and after 

each day’s use. A sampling pump was clipped to each sampled employee’s belt and 

connected via Tygon® tubing and a tapered Leur-type fitting to a pre-weighed, 37-mm 

diameter, 5-micron (µm) pore-size polyvinyl chloride filter supported by a backup pad in a 

three-piece filter cassette sealed with a cellulose shrink band (in accordance with NIOSH 

Methods 0600 and 7500).(41, 42) The front portion of the cassette was removed and the 

cassette was attached to a respirable dust cyclone and placed in the breathing zone of the 

worker.

The filter samples were analyzed for respirable particulates in accordance with NIOSH 

Method 0600,(41) for which the limit of detection (LOD) was 30 µg/sample, and the limit of 

quantitation (LOQ) was 110 µg/sample. The results were blank corrected with the average of 

the media blanks.

Crystalline silica analysis of filter samples was performed using X-ray diffraction in 

accordance with NIOSH Method 7500.(42) The LODs for quartz, cristobalite and tridymite 

are 5 µg/sample, 10 µg/sample, and 10 µg/sample, respectively. The LOQs for quartz, 

cristobalite, and tridymite are 17 µg/sample, 33 µg/sample, and 33 µg/sample, respectively.

Bulk samples were analyzed in accordance with NIOSH Method 7500, for which the LODs 

for quartz, cristobalite, and tridymite in bulk samples were 0.3%, 0.3%, and 0.5%, 

respectively. The LOQs for quartz, cristobalite, and tridymite in bulk samples were 0.83%, 

0.83%, and 1.7%, respectively.

 Statistical Methodology

The statistical criterion used for effective performance of each manufacturer’s control 

system is that the upper 95% confidence limit for the arithmetic mean of each occupation’s 

PBZ air sampling results should be less than the NIOSH REL of 50 µg/m3. These upper 
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confidence limits for each occupation and manufacturer are computed assuming the 

lognormal distribution for the PBZ samples.(43) Tolerance limits for 95% of the population 

of PBZ air samples are also provided. The goal of the study was to compare results with the 

NIOSH REL and not to compare manufacturers against each other.

The PBZ air sampling results were analyzed separately for each occupation and 

manufacturer. The methods available for obtaining confidence limits for the arithmetic mean 

of lognormal distributions are limited to relatively simple models.(44–46) The methodology 

used is for models with a mean and two variance components and is described in more detail 

in Appendix C of NIOSH Publication 2015-105 which uses the “Method of Variance 

Estimates Recovery” (MOVER).(40)

The arithmetic mean of the log normally distributed PBZ air sampling results for each 

manufacturer’s occupation is shown in Equation 1:

(1)

where,

µ =log scale mean;

σ2
s = between site variance;

σ2
sd = within site variance.

The upper confidence limits in Tables II and IV were calculated using Equation 2, which is 

based on a statistical model with one mean and two variance components, as in Equation 1 

above:.

(2)

where,

x̿ = mean of log-scale site means of PBZ samples; Tables II and IV geometric 

means obtained by exponentiation;

 = sample variance of log-scale site means of PBZ samples;

astd2
ws = pooled within-site variance on log-scale, computed by weighting within-site 

variances by their degrees of freedom, summing, and dividing by sum of degrees of 

freedom; geometric standard deviation for within sites in Tables II and IV were obtained by 

exponentiating the square root of this value;
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nsites = number of sites;

df1= nsites −1;

df2 = number of measurements-number of sites;

nbar = average of reciprocals of number of days at each site;

t(0.95,df1) = 95th percentile of t distribution, df1 degrees of freedom;

chisq(0.05,df1) = 5th percentiles of the chi square distribution, df1 degrees of 

freedom;

chisq(1–0.05,df2) = 95th percentiles of the chi square distribution, df2 degrees of 

freedom;

UCLo=eUCL2 is the upper confidence limit for the arithmetic mean of occupation o

Geometric standard deviations between sites are the exponentiated values 

. GSD-based RSD values in Tables II and IV were calculated using 

the formula sqrt(e[ln(GSD) × ln(GSD)]−1).(43)

The upper tolerance limits in Tables II and IV also use the MOVER. The aim is to determine 

the largest confidence level (1−α) for which 95% of PBZ measurements from the entire 

population (from which the chosen sites and workers come) are less than the REL. The 

upper tolerance limits use the exponentiated values of equation 11 in Krishnamoorthy et. 

al.(44) The quantities used in eq (2) are also used for these limits. Ogden et al. recommend 

using between 70% and 80% upper tolerance limits for 95% of the population in compliance 

decisions for small sample sizes.(47)

The air sampling data for the two manufacturers differ in number of days at sites. 

Manufacturer A included three sites with three days of sampling and a fourth site with two 

days. Manufacturer B included five sites with one day of sampling and two sites with 

multiple days. For Manufacturer B, within sites variance is based on the two sites with 

multiple days.

For Manufacturer A, there were three different operators and five different ground workers. 

Some individuals worked at one site, but others worked at multiple sites. Manufacture B 

used the same operator for all sites, and the same ground worker for the first six sites with a 

different one at the seventh site.

SAS Proc Mixed was used to evaluate the between worker variance components separately 

for each study.(48) The dependent variable in each study model was all log scale PBZ 

samples for the two occupations. Including both occupations allows for more statistical 

power. Whereas the model used for Equation 2 had one mean and two variance components, 

this new model had two means, one for each occupation, and four variance components: 

between site and within site variances, as in expression (1), and the variance between 

workers in occupations and the residual variance. For both Manufacturer A and B, the test of 

between worker variance components did not yield statistically significant results (5% level) 

via F test(48) or likelihood ratio(49); the between worker variance component was therefore 
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removed. That variance component is also not needed in the model for Equation 2. Thus, for 

each occupation in each study, the between site and within site variance components were 

the two components used. The need to use relatively simple models restricts the number of 

components to two.

Manufacturer A had one day with sample values less than the limit of detection (LOD) for 

both workers, for which the substitution MCD/√2 was made, where MDC is the 

concentration corresponding to the sample when the LOD is used as the reported mass.(50)

In multiple regression with seven explanatory variables (discussed in a section below), the 

log scale average of the two PBZ samples per day was used as the dependent variable. All 

subsets regression via the Cp criterion(51) was used to reduce the number of variables in the 

model. Each retained numerical variable’s effect was quantified by taking the difference, 

75th – 25th percentile values of the variable, multiplying the difference by the variable’s 

regression coefficient, and exponentiating. This is the effect of the 75th relative to 25th 

percentile of this variable when all other variables are held constant (Table VI).

 RESULTS

NIOSH researchers conducted 42 full-shift PBZ air sampling for respirable crystalline silica 

from the operator and ground worker on two different asphalt pavement milling machines. 

The sampling was conducted over 21 days at 11 highway construction sites during the 

course of normal employee work activities of asphalt pavement milling. A milling machine 

provided by Manufacturer A was used during the first 11 days at 4 sites, and a milling 

machine provided by Manufacturer B was used for milling during the remaining 10 days at 7 

sites.

Diversity in asphalt pavement milling conditions were present. The selected sites included 

diversity in day and night milling with milling during night shifts occurring in 8 of the 21 

shifts. The study included diversity of shift lengths with 79% of the shifts lasting between 8 

to 12 hours. Of the 42 PBZ air samples, 38 of the 42 PBZ air samples were from shifts 

lasting longer than 7 hours, 33 of the 42 PBZ air samples were from shifts lasting longer 

than 8 hours, 20 of the 42 PBZ air samples were from shifts lasting longer than 9 hours, 11 

of the 42 PBZ air samples were from shifts lasting longer than 10 hours, and 5 of the 42 

PBZ air samples were from shifts lasting longer than 11 hours.

Diverse types of highway construction sites were selected. The roads milled included rural 

highways, city streets, a parking lot, and a major freeway. Recycled asphalt pavement 

removal depths included typical 1.5 to 3 inch (3.81 to 7.62 cm) mill and fill removals as well 

as full-depth removals of up to 11 inches (28 cm) of recycled asphalt pavement. Mill and fill 

removals accounted for 13 of the 21 shifts with typical milling machine speeds ranging from 

40 to 80 feet per minute (fpm) (0.2 to 0.41 meters per second (m/s). Removals of 4 to 6 

inches (10 to 15 cm) of recycled asphalt pavement accounted for 3 of the 21 shifts with 

typical milling speeds ranging from 40 to 50 fpm (0.2 to 0.25 m/s). Full depth removals of 9 

to 11 inches (23 to 28 cm) of recycled asphalt pavement accounted for 4 of the 21 shifts with 

milling machine speeds ranging from 20 to 30 fpm (0.1 to 0.15 m/s). On one of the 21 days 
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of milling, the machine was used to remove only 1-inch (2.54 cm) of asphalt pavement at an 

average speed of 12 fpm (0.06 m/s) which was not considered to be representative of typical 

asphalt pavement milling for that 6-hour shift.

 Weather

The weather was recorded from the National Oceanic and Atmospheric Administration 

(NOAA) fixed weather station nearest to each evaluated site. Ambient temperatures ranged 

from 0°C to 33°C and average wind speeds per shift ranged from 0.9 to 5.0 m/s.

 Manufacturer A PBZ Air Sampling Results

Full-shift PBZ silica air sampling results during the 11 days of air sampling at 4 sites for the 

operator and ground worker using the Manufacturer A asphalt milling machine are shown in 

Table I along with the silica content in the bulk and filter samples for each day. At the 4 sites 

studied, the percent bulk silica content in the roads being milled ranged from 7 and 23%, 

with an average of 16%. Silica content in the PBZ filter air samples for the operator and 

ground worker using the Manufacturer A asphalt milling machine ranged from below the 

LOD to 14%. The 22 full-shift PBZ air sampling results for the operator and ground worker 

using the Manufacturer A milling machine ranged from below the minimum detectable 

concentration to 13 µg/m3.

Table II shows the means and upper 95% confidence limits for the two occupations and 

other summary statistics. The geometric mean respirable crystalline silica exposure for the 

operator was 6.2 µg/m3 with an upper 95% confidence limit for the arithmetic mean of 28.2 

µg/m3. The geometric mean respirable crystalline silica exposure for the ground worker was 

6.1 µg/m3 with an upper 95% confidence limit for the arithmetic mean of 13.5 µg/m3. The 

upper confidence limits are less than the NIOSH REL of 50 µg/m3.

Table II also shows the confidence of being less than the NIOSH REL for 95% of the 

population of values from which manufacturer A data were drawn. For the ground worker, 

95% of the population is less than the REL with greater than 95% confidence, and the 

confidence for the operator is about 87%.

 Manufacturer B PBZ Air Sampling Results

Full-shift PBZ air sampling for silica during the ten days of sampling at seven sites for the 

operator and ground worker using the Manufacturer B asphalt milling machine are shown in 

Table III along with the silica content in the bulk and filter samples for each day. At the 7 

sites studied, the percent bulk silica content in the road material being milled ranged from 5 

and 12%, with an average of 8%. Silica content in the PBZ filter air samples for the operator 

and ground worker using the Manufacturer B asphalt milling machine ranged from below 

the LOD to 9%.

The 20 full-shift PBZ air sampling results for the operator and ground worker using the 

Manufacturer B milling machine ranged from below the LOD to 13 µg/m3 with the 

exception of second day of sampling where the PBZ air sample for the ground worker was 

24 µg/m3. The third day of sampling (site 3) resulted in non-detectable concentrations and 
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was not used in the statistical analysis partly because the 6-hour shift included 3-hours of 

downtime and partly because the low milling speed and 1-inch (2.54 cm) removal depth are 

not typical of asphalt milling.

Table IV shows the means and upper 95% confidence limits for the two occupations and 

other summary statistics. The geometric mean respirable crystalline silica exposure for the 

operator was 4.2 µg/m3 with an upper 95% confidence limit for the arithmetic mean of 11.8 

µg/m3. The geometric mean respirable crystalline silica exposure for the ground worker was 

9.0 µg/m3 with an upper 95% confidence limit for the arithmetic mean of 29.8 µg/m3. Thus, 

the upper 95% confidence limits are statistically significantly less than the NIOSH REL of 

50 µg/m3.

Table IV also shows the confidence of being less than the REL for 95% of the population of 

values from which manufacturer B data were drawn. For the operator, 95% of the population 

of silica measurements were less than the REL with more than 95% confidence, and for the 

ground worker the confidence is about 80%.

 Investigation of Effect of Explanatory Variables

The seven explanatory variables (Table V) were manufacturer (A or B), average cut depth, 

average machine speed, whether work was day or night, average wind speed, average 

temperature, and % silica in bulk samples. Table V has 20 rows, since 11 days were sampled 

for manufacturer A and 9 days for manufacturer B (after omitting one day). The dependent 

variable was the log scale average of the operator and ground worker PBZ samples for each 

day. The explanatory variables were used in multiple regression.

The reduced statistical model excluded average temperature and average wind speed. Except 

for the variable that allowed for difference in study means, the estimated regression 

coefficients are shown in Table VI. The variable concerning study means, though needed in 

the model, was not statistically significant at the 10% level, whereas all other included 

variables were. For the three continuous variables, the estimated 75th to 25th percentile factor 

effect is between 2 and 3. Also, day milling leads to about half the PBZ levels as night 

milling. The data set is small and these results need verification from additional work.

 DISCUSSION

Both manufacturers designed their dust controls using recommendations provided as part of 

the Silica/Asphalt Milling Machine Partnership. These recommendations are documented in 

the NIOSH Publication No. 2015-105.(40) A goal of the Partnership was to statistically 

compare the air sampling results during field testing with the NIOSH REL so that milling 

machine manufacturers would have statistical confidence that the dust controls would 

protect workers when implemented on all new asphalt milling machines of similar model 

type for that manufacturer. Appendix C of NIOSH Publication No. 2015-105 provides the 

full development of the statistical method and Appendix B of NIOSH Publication 2015-105 

provides site selection considerations for field testing of engineering controls on asphalt 

milling machines before those machines are implemented across a manufacturer’s entire 

fleet. Site selection recommendations such as weather, silica content, downtime, and shift 
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length were met for all test days except for day 3 of Manufacturer B. Each manufacturer 

chose to have sampling conducted for more days and sites than the minimum recommend by 

NIOSH Publication No. 2015-105.(40)

The evaluated ventilation controls on both asphalt pavement milling machines performed 

well at capturing dust generated in the drum housing and releasing the dust at the top of the 

secondary conveyor at a location away from the workers. The ventilation controls were 

effective at maintaining PBZ air samples to levels well below the NIOSH REL of 50 µg/m3 

for respirable crystalline silica. However, three out of the 21 evaluated shifts included times 

when the crew was milling into the wind while dust released at the outlet of the ventilation 

control blew back toward the operator and ground worker. It was estimated that dust blew 

back toward the machines for less than one hour during two of the shifts and approximately 

three hours for another shift. Dust blowing back toward the operator and ground worker for a 

portion of the three shifts did not appear to influence exposures, but was annoying for the 

operator and the ground worker. When milling into the wind, the operators decided to 

temporarily turn off the ventilation control until wind conditions changed. Turning off the 

ventilation control when milling into the wind worked well for the limited amount of time 

that unfavorable wind conditions were present during three of the 21 days of sampling and 

did not appear to influence exposures. It is possible that future milling studies could occur 

during longer periods of unfavorable wind conditions or the operator could forget to turn the 

ventilation control back on after short periods of unfavorable wind conditions. After this 

study, both milling machine manufacturers made plans to equip their ventilation controls 

with technology to automatically turn the dust control back on after it has been off for 1 

hour.

 CONCLUSIONS

The 42 PBZ air samples were collected during 21 days at 11 sites and included diversity in 

typical asphalt pavement milling conditions. The roads being milled included rural 

highways, city streets, a parking lot, and a major freeway. Milling depths ranged from 

typical one to three inch (2.54 to 7.62 cm) mill and fill removals as well as full-depth 

removals of up to eleven inches (28 cm) of recycled asphalt pavement. The selected sites 

included diversity in day and night milling. Weather conditions included a wide range of 

ambient temperatures and wind conditions. The study included diversity of shift lengths with 

the majority of shifts lasting between 8 to 12 hours. Respirable crystalline silica PBZ air 

samples were below 50 µg/m3 for the operator and ground worker over all 21 evaluated 

shifts covering a wide range of typical conditions for asphalt pavement milling. For each 

occupation and each manufacturer the 95% upper confidence limits for the arithmetic mean 

exposure were less than 50 µg/m3. This suggests that for the population from which the sites 

were drawn, there is high probability that the average exposure of workers is less than 50 

µg/m3.

The results indicate that the evaluated ventilation dust controls in combination with water-

sprays are capable of controlling occupational exposures to respirable crystalline silica 

during a wide range of typical highway construction jobs using asphalt pavement milling 

machines. Following this testing, the manufacturers of both asphalt pavement milling 
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machines made plans to include the ventilation as a standard feature on all new half-lane and 

larger asphalt pavement milling machines. Additional asphalt milling machine 

manufacturers who are Silica/Asphalt Pavement Milling Machine Partnership members also 

made commitments to perform similar field testing and implement silica dust controls on 

their milling machines.
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Figure 1. 
Half-lane and larger asphalt pavement milling machine (Illustration by NIOSH)
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